Wiktionary-Based Word Embeddings
نویسنده
چکیده
Vectorial representations of words have grown remarkably popular in natural language processing and machine translation. The recent surge in deep learning-inspired methods for producing distributed representations has been widely noted even outside these fields. Existing representations are typically trained on large monolingual corpora using context-based prediction models. In this paper, we propose extending pre-existing word representations by exploiting Wiktionary. This process results in a substantial extension of the original word vector representations, yielding a large multilingual dictionary of word embeddings. We believe that this resource can enable numerous monolingual and cross-lingual applications, as evidenced in a series of monolingual and cross-lingual semantic experiments that we have conducted.
منابع مشابه
Watset: Automatic Induction of Synsets from a Graph of Synonyms
This paper presents a new graph-based approach that induces synsets using synonymy dictionaries and word embeddings. First, we build a weighted graph of synonyms extracted from commonly available resources, such as Wiktionary. Second, we apply word sense induction to deal with ambiguous words. Finally, we cluster the disambiguated version of the ambiguous input graph into synsets. Our meta-clus...
متن کاملAutomatic Induction of Synsets from a Graph of Synonyms
This paper presents a new graph-based approach that induces synsets using synonymy dictionaries and word embeddings. First, we build a weighted graph of synonyms extracted from commonly available resources, such as Wiktionary. Second, we apply word sense induction to deal with ambiguous words. Finally, we cluster the disambiguated version of the ambiguous input graph into synsets. Our meta-clus...
متن کاملWiktionary as a source for automatic pronunciation extraction
In this paper, we analyze whether dictionaries from the World Wide Web which contain phonetic notations, may support the rapid creation of pronunciation dictionaries within the speech recognition and speech synthesis system building process. As a representative dictionary, we selected Wiktionary [1] since it is at hand in multiple languages and, in addition to the definitions of the words, many...
متن کاملUsing Wiktionary for Computing Semantic Relatedness
We introduce Wiktionary as an emerging lexical semantic resource that can be used as a substitute for expert-made resources in AI applications. We evaluate Wiktionary on the pervasive task of computing semantic relatedness for English and German by means of correlation with human rankings and solving word choice problems. For the first time, we apply a concept vector based measure to a set of d...
متن کاملWorth Its Weight in Gold or Yet Another Resource - A Comparative Study of Wiktionary, OpenThesaurus and GermaNet
In this paper, we analyze the topology and the content of a range of lexical semantic resources for the German language constructed either in a controlled (GermaNet), semi-controlled (OpenThesaurus), or collaborative, i.e. community-based, manner (Wiktionary). For the first time, the comparison of the corresponding resources is performed at the word sense level. For this purpose, the word sense...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015